Lipschitz sums of convex functions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of Lipschitz Continuous Difference of Convex Functions

We give a necessary and sufficient condition for a difference of convex (DC, for short) functions, defined on a normed space, to be Lipschitz continuous. Our criterion relies on the intersection of the ε-subdifferentials of the involved functions.

متن کامل

On Estimates of Biharmonic Functions on Lipschitz and Convex Domains

Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...

متن کامل

Lipschitz Properties of Convex Mappings

The present paper is concerned with Lipschitz properties of convex mappings. One considers the general context of mappings defined on an open convex subset Ω of a locally convex space X and taking values in a locally convex space Y ordered by a normal cone. One proves also equi-Lipschitz properties for pointwise bounded families of continuous convex mappings, provided the source space X is barr...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

Convex and V-Shaped Sequences of Sums of Functions that Depend on Ceiling Functions

The paper primarily revolves around the convex and V-shaped finite sequences and the inequalities that govern them. We give an elementary proof that a convex sequence is also V-shaped. We prove an inequality that involves an arbitrary nondecreasing function that depends on ceiling functions, thereby establishing the convexity of the corresponding sequence. We present various interpretations and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2003

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm158-3-6